#### Chung Hwa Nuclear Society Meeting Dec./16, 2024

Center of Nuclear Technologies for a Better World Acquiring People's and Global Support

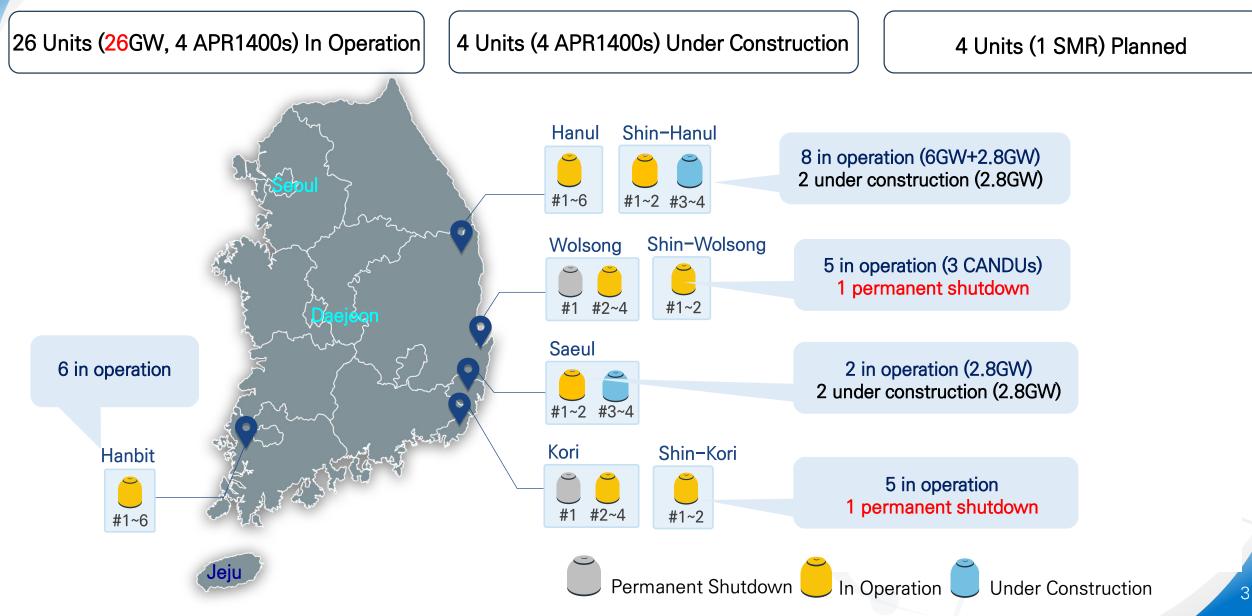


## SMART100 Integral Reactor and Other SMRs under Development in Korea

# Lim, CHAE YOUNG (林采暎) Korea Atomic Energy Research Institute






Center of Nuclear Technologies for a Better World Acquiring People's and Global Support



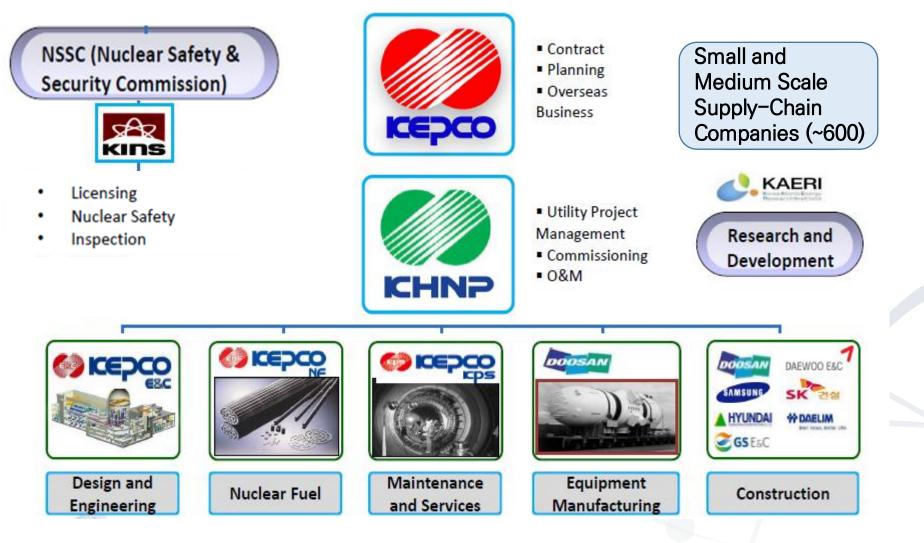
01 Korean Nuclear Power Industry
02 SMART100 and i-SMR
03 Non-Water Cooled SMRs
04 Concluding Remarks



## **Status of Nuclear Power Plants in Korea**

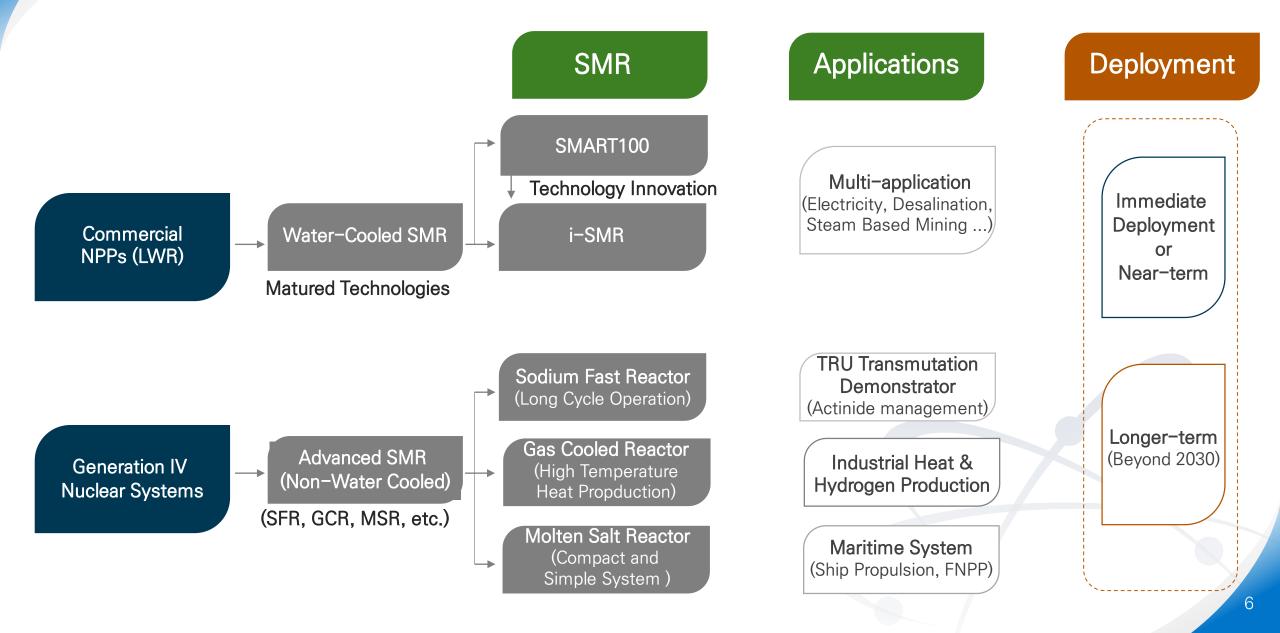





## **Nuclear Power Plant Construction History**

| # o                   | f NPPs                            |                            |                                            |                                       |                                       |                                                           |                  |
|-----------------------|-----------------------------------|----------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------|------------------|
| 32<br>31<br><b>30</b> |                                   | PWR<br>PHWR                | PWR 1.4G                                   |                                       |                                       | <b>SW #4</b> (1.4GW)                                      | S-HW#4<br>S-HW#3 |
| 29                    |                                   |                            |                                            | -                                     |                                       | SW #3 (1.4GW)                                             |                  |
| 28                    |                                   |                            |                                            |                                       |                                       | S-HW #2 (1.4GW)                                           |                  |
| 27                    | APR1400                           |                            | PWR 1.4G                                   | N * 4                                 |                                       | S-HW #1 (1.4GW)                                           |                  |
| 26                    | (Korean Standard Plant)           |                            |                                            |                                       |                                       | / #2 (1.4GW)                                              |                  |
| <b>25</b>             |                                   |                            |                                            |                                       |                                       | (1.4GW)                                                   |                  |
|                       | 0000000                           |                            |                                            |                                       |                                       | 1GW)                                                      |                  |
| 23                    | OPR1000+                          |                            | PWR 1GV                                    | V * 4                                 | S-WS #1(1GW)                          |                                                           |                  |
| 22                    | (Korean Standard Plant)           |                            |                                            |                                       | S-KR #2 (1GW)                         |                                                           |                  |
| 21<br>20              |                                   |                            |                                            | HW #6 (1GW)                           | S-KR #1 (1GW)                         |                                                           |                  |
| 19                    |                                   |                            | Nuclear Technology                         | HW #5 (1GW)                           | _                                     |                                                           |                  |
| 18                    |                                   |                            | Transfer from                              | HB #6 (1GW)                           |                                       |                                                           |                  |
| 17                    |                                   |                            | Combustion Eng.                            | HB #5 (1GW)                           |                                       |                                                           |                  |
| 16                    |                                   | l                          | WS #4                                      |                                       | PWR 1GW * 8                           |                                                           |                  |
| 15                    | OPR1000                           |                            | WS #3                                      |                                       |                                       |                                                           |                  |
| 14                    | (Korean Standard Plant)           |                            | HW #4                                      |                                       | HWR 0.6GW * 3                         |                                                           |                  |
| 13                    | TMI                               | Che <mark>rn</mark> o      | VVI HW #3                                  |                                       |                                       |                                                           |                  |
| 12                    |                                   |                            | WS #2 (0.7GW                               | 0                                     |                                       |                                                           |                  |
| 11                    |                                   |                            | HB #4 (1GW)                                |                                       |                                       |                                                           |                  |
| 10                    |                                   |                            | HB #3 (1GW)                                | _                                     |                                       |                                                           |                  |
| 9                     |                                   |                            | 0N1W)                                      |                                       |                                       |                                                           |                  |
| 8                     |                                   |                            | 1W)                                        |                                       |                                       |                                                           |                  |
| 7                     | Componentize                      | HB #2 (950MW)              |                                            | PWR 0.9GW * 6                         |                                       |                                                           |                  |
| 6                     | Contract                          | HB #1 (950MW)              |                                            |                                       | Fuk <mark>ush</mark> ima              | a                                                         |                  |
| 5                     |                                   | KR #4 (950MW)              |                                            |                                       |                                       |                                                           |                  |
| 4                     |                                   | KR #3 (950MW)              |                                            |                                       |                                       |                                                           |                  |
| 3                     |                                   | (679MW)                    | DIA                                        |                                       | * 2                                   |                                                           |                  |
| 2                     | Contract KR #2 (<br>KR #1 (587MW) |                            |                                            | & PHWR 0.6GW                          | ° 5                                   |                                                           |                  |
| 1                     |                                   | 1 '01 '02 '02 '04 OF '06 ' | •<br>• • • • • • • • • • • • • • • • • • • | 4 من دمر درر 10 <b>۵۵ ۵۵</b> ۵۵ ور ۲۵ | E 106 107 109 100 10 144 142 1        | 13 `14 <b>15</b> `16 `17 `18 `19 <b>20</b> `21 `22 `23 `2 | 4.25 26 VP       |
| -                     | 10 11 12 13 14 13 10 11 18 198    | 01 02 03 04 83 80          | or oo oa 90 ar az as 94 95 a               | 0 97 98 99 00 01 02 03 04             | <b>J3</b> 00 07 08 09 <b>10</b> 11 12 | 13 14 13 10 1/ 18 19 20 21 22 23 2                        | 423 20 YK        |



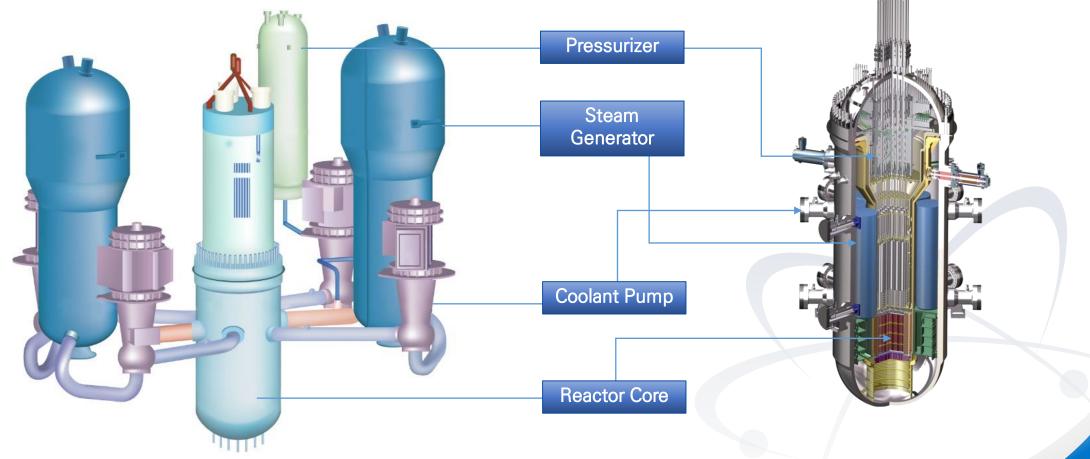

## **Nuclear Industry Infra Structure**

Self-sustaining Nuclear Power Eco System with Full Technology Independence





### **Advanced Reactor Development Program of Korea**




## SMART (System-integrated Modular Advanced ReacTor)

#### Integral Reactor with 330 MWth and 100 MWe Suitable for Small Grids

- Integration of major components into a vessel to prevent potential leak
- Standard design approval (SDA) acquired in 2012 (development started in 1997)

KAER



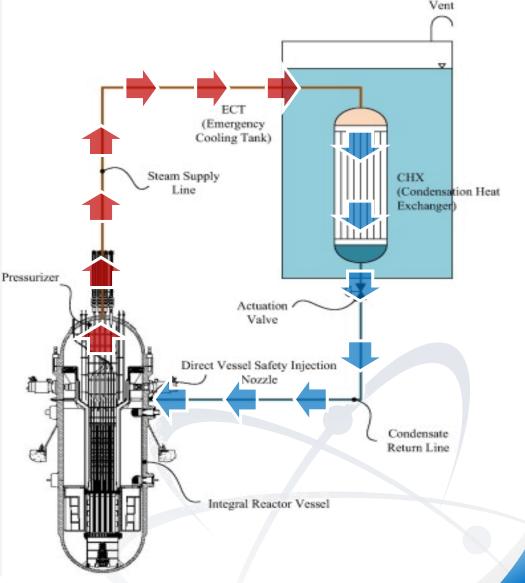


## SMART100: Enhanced Version of SMART

#### Enhanced Passive Safety

 Passive heat removal by natural circulation in accident conditions

### Collaboration with Saudi Arabia


• Pre-project engineering started in 2016

### Versatile Use with Increase Capacity

- Electricity Generation and Desalination
  - 100MWe and fresh water of 40,000 ton/day with 365 MWth
- Steam supply for mining

### Immediately deployable SMR

- SDA obtained in Sept. 2024
- Manufacturability confirmed by Doosan



#### Comprehensive SMART Technology Validation Experiments to Verify Systems, Components and Design Tools for Licensing

#### Fuel Thermal-Hydraulics Tests

Fuel Performance Tests

**CHF** Measurement Test

Spacer Grid

#### Mechanics and Components

#### RPV Dynamics Test, RCP Mockup Test and Helical ISI Test

#### and Helical ISI Test

## Dynamic Test RCP TEST Loop

#### SG Tube Material (A690) Irradiation Test

## Test Facility

SMART - Main Control Room Simulator

#### SMART – Integral Test Loop

Vibration TEST Measurements TEST Section

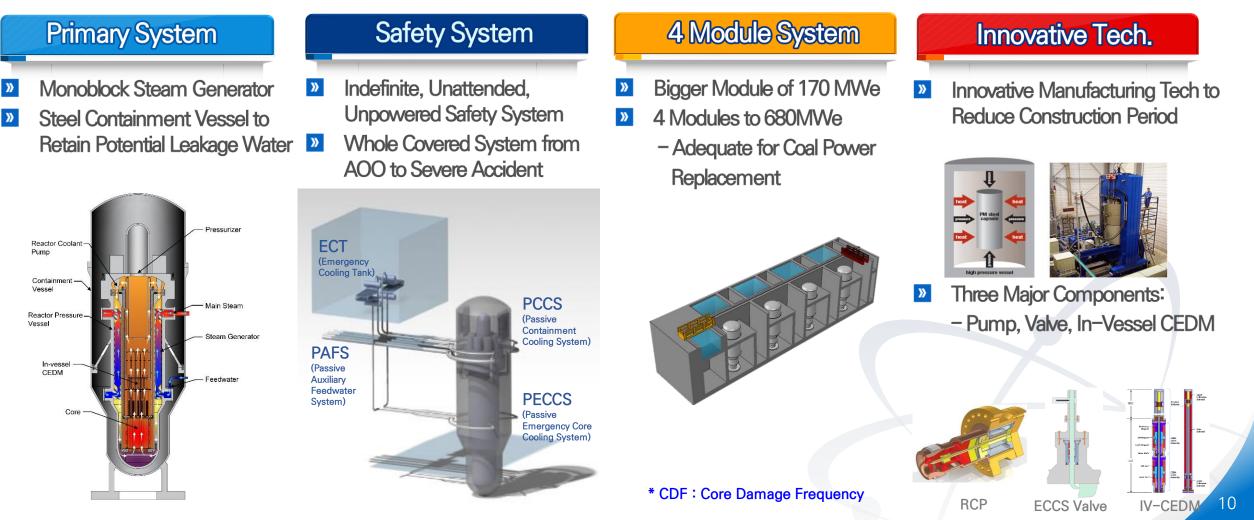
EST Section

#### World's Unique and Largest Full Scope Accident Simulation 1:1 Height, 1/49 Volume





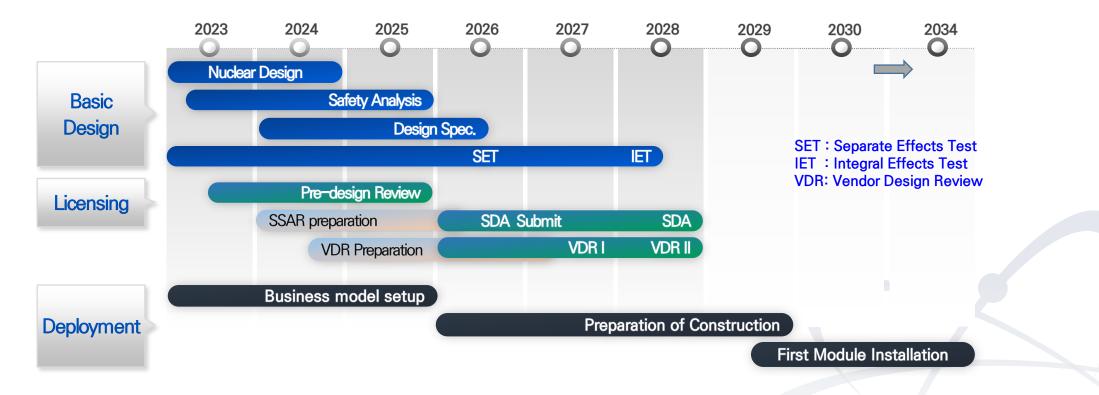
#### System Thermal–Hydraulics Experiment




RPV : Reactor Pressure Vessel RCP : Reactor Coolant Pump ISI : In-Service Inspection PRHRS: Passive Residual Heat Removal System VISTA: Experimental Verification by Integral Simulation of Transient and Accident ITL : Integral Test Loop MCR: Main Control Room

## i-SMR to Enhance Safety Further as well as Economics

Innovative Technology and System Design to Achieve the Top-Tier Requirement for Safety (CDF\* ~ 10<sup>-9</sup>) and Economic (3500\$/kWe) Goals I


KAERI

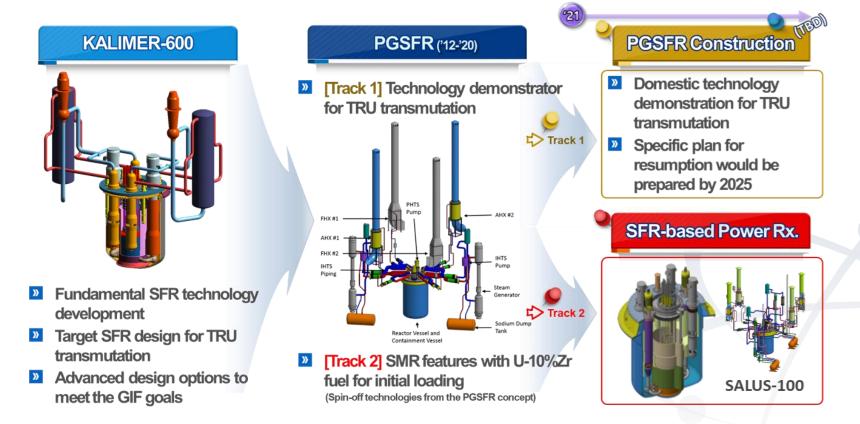




### i-SMR Development and Construction Plan

- Government funding has been started for standard design program in 2023.
- SDA acquisition by 2028 and first module installation by not later than 2034






### Sodium-cooled Fast Reactor

### Development History

PGSFR: Prototype Generation–IV Sodium–cooled Fast Reactor SALUS: Small, Advanced, Long–cycled and Ultimate Safe SFR

- Conceptual design (2007) of KALIMER-600 (Pool-type, Metal fuel, Passive safety features, etc.)
- Engineering design (2020) of PGSFR, TRU-transmutation demonstrator with pyroprocessing
- Basic design of SFR-based SMR with a long fuel cycle core (SALUS-100), in progress





## SALUS-100 and Future SFR Development Plan

#### General Features of SALUS-100

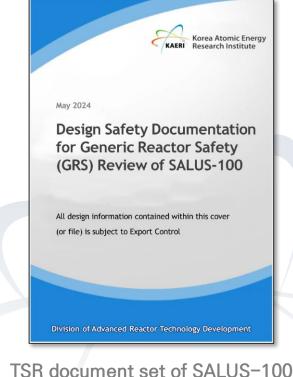
- Spin-off from the PGSFR Development
  - Based Prototype Gen IV SFR which was for transmutation tied with pyro-processing halted in 2022
  - Longer cycle (20year) with lower power density
- Integrated pool-type SFR with Metallic alloy fuel (U-10%Zr) & FC92 cladding
- Electric output: 100 MWe (267 MWt) with core Inlet/Outlet Temps. of 360/510 °C
- Enhanced safety features for a long-term cooling capability with Active and Passive DHRS

### Progress

- Technical Safety Review by IAEA on-going
- Public-Private Partnership Project for SFR-based advanced SMR development
  - Scheduled to begin in 2025 based on a matching fund system with the private company
- HDEC signed an MOU with KAERI dedicated to SFR development
   HDEC: Hyundai Engineering and Construction
- Planning a new project of comprehensive advanced nuclear reactors development encompassing all from design and validation to demonstration



**DHRS: Decay Heat Removal System** 



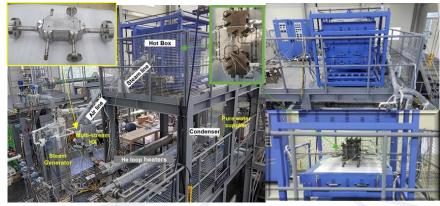

## Technical Safety Review of SALUS-100 by IAEA

#### Specific Achievements

Completion of IAEA TSR\*-DS (Design Safety) in 2024

- -Assessment of SALUS-100 design to identify key regulatory issues earlier to avoid or minimize risks that the developer may encounter during the actual licensing phase
- Generic safety review service to support NPP deployment based on the IAEA safety standards
- TSR Review area of SALUS-100
  - Compliance of international requirements and standards
  - Safety concerns and Potential issue for licensing
  - -Adequacy to undertake pre-licensing review
- Key Milestones
  - IAEA TSR Preparatory Meeting (26-Feb-2024)
  - TSR Design Review and Technical Discussion (07-Oct-2024)
  - Official draft of the IAEA TSR report (01-Nov-2024)
    - Final TSR report scheduled for publication in February 2025




\* Technical Safety Review

## HTGR for Industrial Heat Supply and Hydrogen Production

- Major R&D Products for GCR Development ('04~'19)
  - Computational Tools and Modeling Technologies
    - Neutronics (DeCART/CAPP) and Core T/H Code (CORONA), Safety analysis (GAMMA) and TRISO (COPA) developed
    - Used in the design analysis of MMR of USNC
  - Development of TRISO Fuel and Hightemperature materials
    - Completion of HANARO Irradiation Test
    - Graphite, Ni-base alloy for Gen IV
  - Helium Loop
    - Compact heat exchanger test above 900°C
    - Coupled HTSE (2Nm<sup>3</sup>/hr, 6kWe) tests



#### 



Helium Loop and HTSE



## High Temperature Gas-cooled Reactor

#### Overview

- Development of essential technologies since 2004
- Collaborative study with end-users

   Nuclear HTSE MOU, Alliance of nuclear heat utilization
- Public-Private Partnership project for HTGR system development since 2024

#### Target Plant

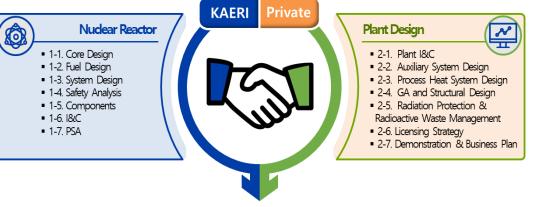
- 90 MWth, UCO-TRISO, Graphite moderated, Helium coolant
- Core outlet temperature: 750℃
- Non-electric applications for process heat

### Specific Characteristics

- Inherent safety
- Alternative industrial heat source to fossil fuel



#### KAERI GCR Public-Private Partnership Participants & Roadmap


DAEWOO E&C

**SK** ecoplant

Core Design / System Design / Safety Analysis Korea Atomic Energy Fuel Design / Core Structure Design

Project Management / Plant Design (BOP)

Electrical System Design for Plant



KAERI Research Institute

E&C

SMART

| Yr                       | ~'24                              | '24                                | '25                     | '26                            | '27 | '30 ~                                                                  | '35~                      |  |
|--------------------------|-----------------------------------|------------------------------------|-------------------------|--------------------------------|-----|------------------------------------------------------------------------|---------------------------|--|
| Classification           | Government<br>R&D                 | PPP Development Project            |                         |                                | ct  | Demonstration Project                                                  | Commercialization Project |  |
| Leading<br>Organizations | Government                        | Government 50<br>Private Sector 50 |                         |                                |     |                                                                        | Private Sector            |  |
| Project<br>Details       | Development<br>of<br>Technologies | Conc                               | hase)<br>eptual<br>sign | (2 <sup>nd</sup> Ph<br>Basic D |     | <ul> <li>PSAR · EIA, FSAR</li> <li>Site Selection · CP · OP</li> </ul> | Business                  |  |

PPP Project for Basic Design of HTGR & Process Heat Plant

**IOTTE CHEMICAL** Process Heat System Design/ Process Heat Business Plan

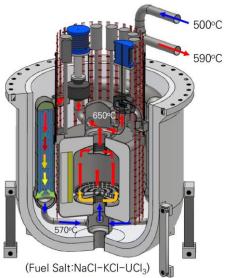
Radiation Protection System Design Radioactive Waste Management System

SOEC System Design / Hydrogen Business Plan



## **URECA – Molten Salt Reactor for Ship Propulsion**

#### Advantages of Molten Salt Reactor


- Small and simpler structure due to fuel mixed with coolant salt
- No significant dispersion of radioactive materials due to solidification after leak in an accident condition
- Technical Difficulties with Corrosion
  - Cladding with corrosion resistant material layer
  - Design with replaceable components

#### Small Scale R&D Going on after Selection as a National Innovative Challenge Project in 2022

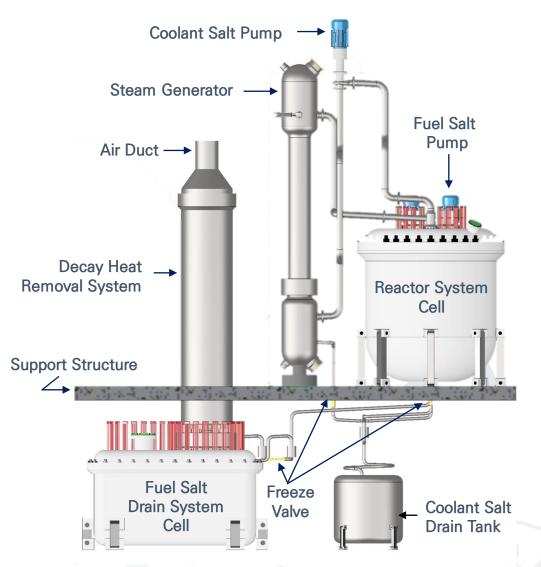
- Comprehensive demonstration of key technologies by 2026
   3.5 year budget of ~29 M\$
- Basic design and license application by 2035
- FOAK for ship propulsion by 2040

#### Experimental Facilities in Gampo Site Being Planned

- MOU signed with Seaborg
- Specific plan to build molten salt experimental facilities not yet fixed






## Feature of URECA and Partnership

### Features of URECA

- Thermal Output: ~ 100 MWth
  - 15,000 TEU Container Ship Engine
- Outlet Temperature: over 600 ℃
  - Electricity, Hydrogen and Heat Production
- Fuel: NaCI-KCI-UCI<sub>3</sub>
- Neutron Spectrum: Fast

### MSR Partnership







## **Concluding Remarks**

#### Nuclear Power Technology Well Established in Korea

- Continued construction of 32 nuclear power plants for more than 50 years
  provided the self-sufficient complete nuclear power plant (NPP) supply system
- It became the base of efficient and low cost NPP construction as proved by the UAE Barakha project
- With the R&Ds of various new reactors being paralleled by construction, the nuclear power technology is well established in Korea

#### Various Advanced Reactors Under Development for Carbon Neutrality

- SMART for small electrical grids and resource mining in remotes sites
- iSMR primarily to replace coal power plants
- SALUS for long term operation in remote places
- HTGR for high temperature industrial heat supply and hydrogen generation
- MSR for ship propulsion



### We develop Nuclear Technologies for a Better World

2